II B.Tech - I Semester - Regular / Supplementary Examinations DECEMBER 2022

DIGITAL LOGIC DESIGN
 (ELECTRONICS \& COMMUNICATION ENGINEERING)

Duration: 3 hours

Max. Marks: 70
Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.
2. All parts of Question must be answered in one place.

BL - Blooms Level
CO - Course Outcome

UNIT-II

| 3 | a)Simplify the Boolean function using K-map
 and realize using multilevel OR- NAND,
 and AND-NOR
 F (w, x, y, z) $=\Sigma \mathrm{m}(0,1,2,4,5,6,8,9,12$,
 $13,14)$ | CO3 | 7 M |
| :--- | :--- | :--- | :--- | :--- | :--- |
| b) | A safe has five locks, v, w, x, y, and z, all of
 which must be unlocked for the safe to open.
 The keys to the locks are distributed among
 five executives in the following manner: A
 has keys for locks v and x; B has keys for
 locks v and y; C has keys for locks w and y;
 D has keys for locks x and z; E has keys for
 locks v and z.
 (i) Determine the minimum number of
 executives required to open the safe.
 (ii) Find all the combinations of executives
 that can open the safe. Write an expression
 f (A, B, C, D, E) which specifies when the
 safe can be opened as a function of which
 executives are present.
 (iii) Who is the "essential executive"
 without whom the safe cannot be opened? | 7 M | |

UNIT-V

9 | Reduce the given state diagram and draw the |
| :--- |
| reduced state diagram and suggest possible state |
| assignment for each state. |

OR								
10	For following state table					L4	CO5	14 M
		Nex	tate		put			
	Present State	$x=0$	$x=1$	$x=0$	$x=1$			
	a	f	b	0	0			
	b	${ }^{\text {d }}$	c	0	0			
	c	f	e	0	0			
	d	g	a	1	0			
	e	${ }^{\text {d }}$	c	0	0			
	f	f	b	1	1			
	g	g	h	0	1			
	h	g	a	1	0			
	i) Draw the co ii) Tabulate th iii) Draw the reduced state	pond rduce diag e.		agram e. pond	ng to the			

