## II B.Tech - I Semester – Regular / Supplementary Examinations DECEMBER 2022

## DIGITAL LOGIC DESIGN

(ELECTRONICS & COMMUNICATION ENGINEERING)

Duration: 3 hours

Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.

2. All parts of Question must be answered in one place.

BL – Blooms Level

CO – Course Outcome

Max. Marks: 70

|    |        |                                             | BL | CO  | Max.<br>Marks |  |
|----|--------|---------------------------------------------|----|-----|---------------|--|
|    | UNIT-I |                                             |    |     |               |  |
| 1  | a)     | Determine the base of the following number  | L2 | CO1 | 6 M           |  |
|    |        | system if the given relations are valid.    |    |     |               |  |
|    |        | i) $\frac{33}{3} = 11$ ii) $\sqrt{41} = 5$  |    |     |               |  |
|    | b)     | Encode each of the 10 decimal digits        | L2 | CO1 | 8 M           |  |
|    |        | 0, 1,, 9 by means of the following          |    |     |               |  |
|    |        | weighted binary codes:                      |    |     |               |  |
|    |        | 6 3 1 -1                                    |    |     |               |  |
|    |        | 7 3 2 -1                                    |    |     |               |  |
|    |        | 8 7 -4 -2                                   |    |     |               |  |
|    |        | Determine which of the above codes is self- |    |     |               |  |
|    |        | complementing.                              |    |     |               |  |
| OR |        |                                             |    |     |               |  |
| 2  | a)     | Convert BCD codes in to following codes.    | L2 | CO1 | 6 M           |  |
|    |        | i) 2 4 2 1                                  |    |     |               |  |
|    |        | ii) 6 4 2 -3                                |    |     |               |  |
|    | b)     | State and Prove all theorems of Boolean     | L2 | CO1 | 8 M           |  |
|    |        | algebra.                                    |    |     |               |  |

|   |    | UNIT-II                                                 |    |     |     |
|---|----|---------------------------------------------------------|----|-----|-----|
| 3 | a) | Simplify the Boolean function using K-map               | L4 | CO3 | 7 M |
|   |    | and realize using multilevel OR- NAND,                  |    |     |     |
|   |    | and AND-NOR                                             |    |     |     |
|   |    | F (w, x, y, z) = $\Sigma$ m(0, 1, 2, 4, 5, 6, 8, 9, 12, |    |     |     |
|   |    | 13, 14)                                                 |    |     |     |
|   | b) | A safe has five locks, v, w, x, y, and z, all of        | L3 | CO2 | 7 M |
|   |    | which must be unlocked for the safe to open.            |    |     |     |
|   |    | The keys to the locks are distributed among             |    |     |     |
|   |    | five executives in the following manner: A              |    |     |     |
|   |    | has keys for locks v and x; B has keys for              |    |     |     |
|   |    | locks v and y; C has keys for locks w and y;            |    |     |     |
|   |    | D has keys for locks x and z; E has keys for            |    |     |     |
|   |    | locks v and z.                                          |    |     |     |
|   |    | (i) Determine the minimum number of                     |    |     |     |
|   |    | executives required to open the safe.                   |    |     |     |
|   |    | (ii) Find all the combinations of executives            |    |     |     |
|   |    | that can open the safe. Write an expression             |    |     |     |
|   |    | f (A, B, C, D, E) which specifies when the              |    |     |     |
|   |    | safe can be opened as a function of which               |    |     |     |
|   |    | executives are present.                                 |    |     |     |
|   |    | (iii) Who is the "essential executive"                  |    |     |     |
|   |    | without whom the safe cannot be opened?                 |    |     |     |
|   |    | OR                                                      |    |     |     |
| 4 | a) |                                                         | L3 | CO2 | 7 M |
|   |    | 5, 13) + $\Sigma$ d (6, 7, 8, 9, 11, 15):               |    |     |     |
|   |    | (i) Find a minimal sum-of-products                      |    |     |     |
|   |    | expression                                              |    |     |     |
|   |    | (ii) Find a minimal product-of-sums                     |    |     |     |
|   |    | expression                                              |    | ~   |     |
|   | b) | Simplify the following Boolean functions:               | L3 | CO3 | 7 M |
|   |    | i) $F_1(A, B, C, D) = \pi M(1, 3, 5, 7, 13, 15)$        |    |     |     |
|   |    | ii) $F_2(A, B, C, D) = \pi M(1, 3, 6, 9, 11, 12, 14)$   |    |     |     |

|   |    | UNIT-III                                                                            |    |     |     |
|---|----|-------------------------------------------------------------------------------------|----|-----|-----|
| 5 | a) | Design Full adder circuit with only NAND gates.                                     | L4 | CO4 | 7 M |
|   | b) | Design a prime number detector for 4-bit input using i) 8×1 and ii) 4×1 Multiplexer | L4 | CO4 | 7 M |
|   |    | OR                                                                                  |    |     |     |
| 6 | a) | Design 4 Bit Parallel Adder / Subtractor and Explain.                               | L4 | CO4 | 7 M |
|   | b) | Design Four bit Binary to Gray Code<br>Converter.                                   | L4 | CO4 | 7 M |
|   |    | UNIT-IV                                                                             |    |     |     |
| 7 | a) | Draw the neat diagram of SR flip flop and write the characteristic table.           | L3 | CO4 | 6 M |
|   | b) | Design MOD-10 Synchronous counter using D-flip flops.                               | L4 | CO5 | 8 M |
|   |    | OR                                                                                  |    |     |     |
|   |    |                                                                                     | L4 | CO4 | 6 M |
| 8 | a) | Convert JK flip flop to SR flip flop.<br>Design 3 bit synchronous up/down counter.  | L4 | 00. |     |

